Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons
نویسندگان
چکیده
When a terawatt-peak-power laser beam is focused into a gas jet, an electron plasma wave, driven by forward Raman scattering, is observed to accelerate a naturally collimated beam of electrons to relativistic energies (up to 10(9) total electrons, with an energy distribution maximizing at 2 megaelectron volts, a transverse emittance as low as 1 millimeter-milliradian, and a field gradient of up to 2 gigaelectron volts per centimeter). Electron acceleration and the appearance of high-frequency modulations in the transmitted light spectrum were both found to have sharp thresholds in laser power and plasma density. A hole in the center of the electron beam may indicate that plasma electrons were expelled radially.
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملEffects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses
In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In ad...
متن کاملInjection, trapping, and acceleration of electrons in a three-dimensional nonlinear laser wakefield
It is demonstrated that the accelerating and focusing phases of the nonlinear three-dimensional axisymmetric laser wake can almost entirely overlap starting from a certain distance behind the laser pulse in homogeneous plasma. Such field structure results from the curvature of phase fronts due to the radially inhomogeneous relativistic shift of plasma frequency. Consequently, the number of trap...
متن کاملNonlinear optics in relativistic plasmas.
We review our recent work on the various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling.
متن کاملDevelopments in Relativistic Nonlinear Optics
We report recent results of experiments and simulations in the regime of peak laser intensities above 10 W/cm, including the following topics: (1) electron and proton acceleration to energies in excess of 10 MeV in well collimated beams; (2) use of laser chirp to control the growth of plasma waves and acceleration of electrons by the Raman instability; (3) all optical injection and acceleration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 273 5274 شماره
صفحات -
تاریخ انتشار 1996